Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in bright yellow-2 tobacco cells.

Identifieur interne : 001C05 ( Main/Exploration ); précédent : 001C04; suivant : 001C06

The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in bright yellow-2 tobacco cells.

Auteurs : Nathalie Leborgne-Castel [France] ; Jeannine Lherminier ; Christophe Der ; Jérôme Fromentin ; Valérie Houot ; Françoise Simon-Plas

Source :

RBID : pubmed:18184734

Descripteurs français

English descriptors

Abstract

The plant defense elicitor cryptogein triggers well-known biochemical events of early signal transduction at the plasma membrane of tobacco (Nicotiana tabacum) cells, but microscopic observations of cell responses related to these early events were lacking. We determined that internalization of the lipophilic dye FM4-64, which is a marker of endocytosis, is stimulated a few minutes after addition of cryptogein to tobacco Bright Yellow-2 (BY-2) cells. This stimulation is specific to the signal transduction pathway elicited by cryptogein because a lipid transfer protein, which binds to the same receptor as cryptogein but without triggering signaling, does not increase endocytosis. To define the nature of the stimulated endocytosis, we quantified clathrin-coated pits (CCPs) forming on the plasma membrane of BY-2 cells. A transitory stimulation of this morphological event by cryptogein occurs within the first 15 min. In the presence of cryptogein, increases in both FM4-64 internalization and clathrin-mediated endocytosis are specifically blocked upon treatment with 5 microm tyrphostin A23, a receptor-mediated endocytosis inhibitor. The kinetics of the transient increase in CCPs at the plasma membrane coincides with that of transitory reactive oxygen species (ROS) production occurring within the first 15 min after elicitation. Moreover, in BY-2 cells expressing NtrbohD antisense cDNA, which are unable to produce ROS when treated with cryptogein, the CCP stimulation is inhibited. These results indicate that the very early endocytic process induced by cryptogein in tobacco is due, at least partly, to clathrin-mediated endocytosis and is dependent on ROS production by the NADPH oxidase NtrbohD.

DOI: 10.1104/pp.107.111716
PubMed: 18184734
PubMed Central: PMC2259092


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in bright yellow-2 tobacco cells.</title>
<author>
<name sortKey="Leborgne Castel, Nathalie" sort="Leborgne Castel, Nathalie" uniqKey="Leborgne Castel N" first="Nathalie" last="Leborgne-Castel">Nathalie Leborgne-Castel</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, Dijon, France. nathalie.leborgne-castel@dijon.inra.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, Dijon</wicri:regionArea>
<placeName>
<region type="region">Bourgogne-Franche-Comté</region>
<region type="old region">Bourgogne</region>
<settlement type="city">Dijon</settlement>
</placeName>
<orgName type="university">Université de Bourgogne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lherminier, Jeannine" sort="Lherminier, Jeannine" uniqKey="Lherminier J" first="Jeannine" last="Lherminier">Jeannine Lherminier</name>
</author>
<author>
<name sortKey="Der, Christophe" sort="Der, Christophe" uniqKey="Der C" first="Christophe" last="Der">Christophe Der</name>
</author>
<author>
<name sortKey="Fromentin, Jerome" sort="Fromentin, Jerome" uniqKey="Fromentin J" first="Jérôme" last="Fromentin">Jérôme Fromentin</name>
</author>
<author>
<name sortKey="Houot, Valerie" sort="Houot, Valerie" uniqKey="Houot V" first="Valérie" last="Houot">Valérie Houot</name>
</author>
<author>
<name sortKey="Simon Plas, Francoise" sort="Simon Plas, Francoise" uniqKey="Simon Plas F" first="Françoise" last="Simon-Plas">Françoise Simon-Plas</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18184734</idno>
<idno type="pmid">18184734</idno>
<idno type="doi">10.1104/pp.107.111716</idno>
<idno type="pmc">PMC2259092</idno>
<idno type="wicri:Area/Main/Corpus">001E67</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E67</idno>
<idno type="wicri:Area/Main/Curation">001E67</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E67</idno>
<idno type="wicri:Area/Main/Exploration">001E67</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in bright yellow-2 tobacco cells.</title>
<author>
<name sortKey="Leborgne Castel, Nathalie" sort="Leborgne Castel, Nathalie" uniqKey="Leborgne Castel N" first="Nathalie" last="Leborgne-Castel">Nathalie Leborgne-Castel</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, Dijon, France. nathalie.leborgne-castel@dijon.inra.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, Dijon</wicri:regionArea>
<placeName>
<region type="region">Bourgogne-Franche-Comté</region>
<region type="old region">Bourgogne</region>
<settlement type="city">Dijon</settlement>
</placeName>
<orgName type="university">Université de Bourgogne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lherminier, Jeannine" sort="Lherminier, Jeannine" uniqKey="Lherminier J" first="Jeannine" last="Lherminier">Jeannine Lherminier</name>
</author>
<author>
<name sortKey="Der, Christophe" sort="Der, Christophe" uniqKey="Der C" first="Christophe" last="Der">Christophe Der</name>
</author>
<author>
<name sortKey="Fromentin, Jerome" sort="Fromentin, Jerome" uniqKey="Fromentin J" first="Jérôme" last="Fromentin">Jérôme Fromentin</name>
</author>
<author>
<name sortKey="Houot, Valerie" sort="Houot, Valerie" uniqKey="Houot V" first="Valérie" last="Houot">Valérie Houot</name>
</author>
<author>
<name sortKey="Simon Plas, Francoise" sort="Simon Plas, Francoise" uniqKey="Simon Plas F" first="Françoise" last="Simon-Plas">Françoise Simon-Plas</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algal Proteins (physiology)</term>
<term>Cell Line (MeSH)</term>
<term>Cell Membrane (metabolism)</term>
<term>Clathrin-Coated Vesicles (metabolism)</term>
<term>Endocytosis (physiology)</term>
<term>Fluorescent Dyes (metabolism)</term>
<term>Fungal Proteins (MeSH)</term>
<term>Host-Pathogen Interactions (physiology)</term>
<term>Ligands (MeSH)</term>
<term>Microscopy, Electron, Transmission (MeSH)</term>
<term>Pyridinium Compounds (metabolism)</term>
<term>Quaternary Ammonium Compounds (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Signal Transduction (physiology)</term>
<term>Spectrometry, Fluorescence (MeSH)</term>
<term>Tobacco (microbiology)</term>
<term>Tobacco (physiology)</term>
<term>Tobacco (ultrastructure)</term>
<term>Tyrphostins (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Colorants fluorescents (métabolisme)</term>
<term>Composés d'ammonium quaternaire (métabolisme)</term>
<term>Composés de pyridinium (métabolisme)</term>
<term>Endocytose (physiologie)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Interactions hôte-pathogène (physiologie)</term>
<term>Ligands (MeSH)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Microscopie électronique à transmission (MeSH)</term>
<term>Protéines d'algue (physiologie)</term>
<term>Protéines fongiques (MeSH)</term>
<term>Spectrométrie de fluorescence (MeSH)</term>
<term>Tabac (microbiologie)</term>
<term>Tabac (physiologie)</term>
<term>Tabac (ultrastructure)</term>
<term>Transduction du signal (physiologie)</term>
<term>Tyrphostines (MeSH)</term>
<term>Vésicules tapissées de clathrine (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fluorescent Dyes</term>
<term>Pyridinium Compounds</term>
<term>Quaternary Ammonium Compounds</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Algal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Clathrin-Coated Vesicles</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Colorants fluorescents</term>
<term>Composés d'ammonium quaternaire</term>
<term>Composés de pyridinium</term>
<term>Espèces réactives de l'oxygène</term>
<term>Membrane cellulaire</term>
<term>Vésicules tapissées de clathrine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Endocytose</term>
<term>Interactions hôte-pathogène</term>
<term>Protéines d'algue</term>
<term>Tabac</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Endocytosis</term>
<term>Host-Pathogen Interactions</term>
<term>Signal Transduction</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Fungal Proteins</term>
<term>Ligands</term>
<term>Microscopy, Electron, Transmission</term>
<term>Spectrometry, Fluorescence</term>
<term>Tyrphostins</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Ligands</term>
<term>Lignée cellulaire</term>
<term>Microscopie électronique à transmission</term>
<term>Protéines fongiques</term>
<term>Spectrométrie de fluorescence</term>
<term>Tabac</term>
<term>Tyrphostines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The plant defense elicitor cryptogein triggers well-known biochemical events of early signal transduction at the plasma membrane of tobacco (Nicotiana tabacum) cells, but microscopic observations of cell responses related to these early events were lacking. We determined that internalization of the lipophilic dye FM4-64, which is a marker of endocytosis, is stimulated a few minutes after addition of cryptogein to tobacco Bright Yellow-2 (BY-2) cells. This stimulation is specific to the signal transduction pathway elicited by cryptogein because a lipid transfer protein, which binds to the same receptor as cryptogein but without triggering signaling, does not increase endocytosis. To define the nature of the stimulated endocytosis, we quantified clathrin-coated pits (CCPs) forming on the plasma membrane of BY-2 cells. A transitory stimulation of this morphological event by cryptogein occurs within the first 15 min. In the presence of cryptogein, increases in both FM4-64 internalization and clathrin-mediated endocytosis are specifically blocked upon treatment with 5 microm tyrphostin A23, a receptor-mediated endocytosis inhibitor. The kinetics of the transient increase in CCPs at the plasma membrane coincides with that of transitory reactive oxygen species (ROS) production occurring within the first 15 min after elicitation. Moreover, in BY-2 cells expressing NtrbohD antisense cDNA, which are unable to produce ROS when treated with cryptogein, the CCP stimulation is inhibited. These results indicate that the very early endocytic process induced by cryptogein in tobacco is due, at least partly, to clathrin-mediated endocytosis and is dependent on ROS production by the NADPH oxidase NtrbohD.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18184734</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>07</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>146</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2008</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in bright yellow-2 tobacco cells.</ArticleTitle>
<Pagination>
<MedlinePgn>1255-66</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.107.111716</ELocationID>
<Abstract>
<AbstractText>The plant defense elicitor cryptogein triggers well-known biochemical events of early signal transduction at the plasma membrane of tobacco (Nicotiana tabacum) cells, but microscopic observations of cell responses related to these early events were lacking. We determined that internalization of the lipophilic dye FM4-64, which is a marker of endocytosis, is stimulated a few minutes after addition of cryptogein to tobacco Bright Yellow-2 (BY-2) cells. This stimulation is specific to the signal transduction pathway elicited by cryptogein because a lipid transfer protein, which binds to the same receptor as cryptogein but without triggering signaling, does not increase endocytosis. To define the nature of the stimulated endocytosis, we quantified clathrin-coated pits (CCPs) forming on the plasma membrane of BY-2 cells. A transitory stimulation of this morphological event by cryptogein occurs within the first 15 min. In the presence of cryptogein, increases in both FM4-64 internalization and clathrin-mediated endocytosis are specifically blocked upon treatment with 5 microm tyrphostin A23, a receptor-mediated endocytosis inhibitor. The kinetics of the transient increase in CCPs at the plasma membrane coincides with that of transitory reactive oxygen species (ROS) production occurring within the first 15 min after elicitation. Moreover, in BY-2 cells expressing NtrbohD antisense cDNA, which are unable to produce ROS when treated with cryptogein, the CCP stimulation is inhibited. These results indicate that the very early endocytic process induced by cryptogein in tobacco is due, at least partly, to clathrin-mediated endocytosis and is dependent on ROS production by the NADPH oxidase NtrbohD.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Leborgne-Castel</LastName>
<ForeName>Nathalie</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>UMR INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, Dijon, France. nathalie.leborgne-castel@dijon.inra.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lherminier</LastName>
<ForeName>Jeannine</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Der</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fromentin</LastName>
<ForeName>Jérôme</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Houot</LastName>
<ForeName>Valérie</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Simon-Plas</LastName>
<ForeName>Françoise</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>01</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020418">Algal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C092350">FM 4-64</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005456">Fluorescent Dyes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011726">Pyridinium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000644">Quaternary Ammonium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020032">Tyrphostins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C061032">cryptogein protein, Phytophthora cryptogea</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RV0GCD31OJ</RegistryNumber>
<NameOfSubstance UI="C060641">tyrphostin A23</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020418" MajorTopicYN="N">Algal Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022163" MajorTopicYN="N">Clathrin-Coated Vesicles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004705" MajorTopicYN="N">Endocytosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005456" MajorTopicYN="N">Fluorescent Dyes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046529" MajorTopicYN="N">Microscopy, Electron, Transmission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011726" MajorTopicYN="N">Pyridinium Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000644" MajorTopicYN="N">Quaternary Ammonium Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013050" MajorTopicYN="N">Spectrometry, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020032" MajorTopicYN="N">Tyrphostins</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18184734</ArticleId>
<ArticleId IdType="pii">pp.107.111716</ArticleId>
<ArticleId IdType="doi">10.1104/pp.107.111716</ArticleId>
<ArticleId IdType="pmc">PMC2259092</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2002 Jul;7(7):293-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biophys Biochem Cytol. 1961 Feb;9:409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13764136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Jul;19(7):711-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16838784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Jan;9(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2003 Mar;4(3):213-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 1989 Oct;32(10):2344-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2552117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Nov;109(3):1025-1031</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jul;31(2):137-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12121444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Oct 23;273(43):28073-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9774424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2007;230(1-2):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17351731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Dec;40(5):783-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15546360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Mar 1;20(5):537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16510871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1985 Feb;100(2):633-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2857182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 4;278(14):12022-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12556528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Sep;38(1-2):49-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9738960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):397-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15939662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1154-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1992 Feb;12(2):363-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1371312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Dec;48(5):757-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17059402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Mar 20;17(6):520-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17306539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2005 Nov 1;118(Pt 21):5141-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurobiol. 1996 Jun;6(3):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8794083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1989 Oct;1(10):1003-1009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12359884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Dec;16(12):3216-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Apr;104(4):1245-1249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:221-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1937-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Nov 30;509(1):27-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11734200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 2;282(9):6803-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17166839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Jul 1;21(13):1598-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17578906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2002 Sep;3(9):614-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12191013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:251-275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microsc. 2004 May;214(Pt 2):159-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15102063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(8):2384-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6326124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1989 Aug 15;183(3):555-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2776750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jun;16(6):1604-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jul 1;16(13):1707-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12101128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2005 Oct;226(1-2):55-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16231101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2003;72:395-447</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(7):1637-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17420174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2003 Nov 15;291(1):150-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2006 Jan;10(1):137-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2003 Nov;4(11):724-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 Sep;264(2):562-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10491104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Oct 30;374(2):203-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7589535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Feb;95(2):486-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Nov;9(11):2077-2091</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12237354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Dec 9;242(4884):1396-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2904698</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Bourgogne</li>
<li>Bourgogne-Franche-Comté</li>
</region>
<settlement>
<li>Dijon</li>
</settlement>
<orgName>
<li>Université de Bourgogne</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Der, Christophe" sort="Der, Christophe" uniqKey="Der C" first="Christophe" last="Der">Christophe Der</name>
<name sortKey="Fromentin, Jerome" sort="Fromentin, Jerome" uniqKey="Fromentin J" first="Jérôme" last="Fromentin">Jérôme Fromentin</name>
<name sortKey="Houot, Valerie" sort="Houot, Valerie" uniqKey="Houot V" first="Valérie" last="Houot">Valérie Houot</name>
<name sortKey="Lherminier, Jeannine" sort="Lherminier, Jeannine" uniqKey="Lherminier J" first="Jeannine" last="Lherminier">Jeannine Lherminier</name>
<name sortKey="Simon Plas, Francoise" sort="Simon Plas, Francoise" uniqKey="Simon Plas F" first="Françoise" last="Simon-Plas">Françoise Simon-Plas</name>
</noCountry>
<country name="France">
<region name="Bourgogne-Franche-Comté">
<name sortKey="Leborgne Castel, Nathalie" sort="Leborgne Castel, Nathalie" uniqKey="Leborgne Castel N" first="Nathalie" last="Leborgne-Castel">Nathalie Leborgne-Castel</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C05 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C05 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18184734
   |texte=   The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in bright yellow-2 tobacco cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18184734" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024